
On the amount of abelian groups of a given order
and a related number theoretic problem
Introduction
The starting point of our observations will be the asymptotic behavior of the amount of
different (i.e. non-isomorphic) abelian groups of order n for large n. We will denote this
amount by f(n), and show that

(the O-relations are wrt the limit as n → ∞ and are not necessarily evenly distributed in
the parameters) where

A = ζ(2)ζ(3)ζ(4) …

(ζ(s) is the Riemann zeta function). The value of A lies between 2 and 2.5. (1) implies
that

1

n

n

∑
k=1

f(k) → A as n → ∞

which means that, on average there are A different abelian groups of order n.

We will furthermore apply the in (1) used method in §2, to asymptotically estimate
another number theoretic function. To clarify the method used here, we will formulate it
in a generalized lemma.

Let ψ(n) be a number theoretic function which we want to estimate. Our method will be
determining another number theoretic function ω(n) together with a positive integer i,
which is connected to ψ(n) through the formula†

We will then correlate the asymptotic behavior of ψ(n) with the summatoric function 

χ(n) =
n

∑
l=1

ω(l).


The most important case of going from χ(n) to ψ(n) will be expressed by the following
lemma.

If (2) and

n

∑
k=1

f(k) = An + O(√n) (1)

ψ(n) =
n

∑
l=1

ω(l) [ i√ n

l
] (2)

χ(n) =
n

∑
l=1

ω(l) = O(i+1√n) (3)



then

ψ(n) = C i√n + O(i+1√n)

where C is the constant

(In our applications ω(n) will be strictly positive, thus C > 0)

Proof Generally known, (3) implies that the Dirichlet series

∞

∑
l=1

ω(l)

ls

converges for s > 1
i+1  with remainder

∞

∑
l=1

ω(l)

ls
= O(n

1
i+1 −s)

In particular, the series (4) also converges, and we have

n

∑
l=1

ω(l)
i√l

= C + O(n
1

i+1 − 1
i )

Thus due to (2) and (3)

as stated.

§1 Amount of abelian groups of a given order
In the introduction we denoted the amount of different abelian groups of order n by 
f(n). For the purpose of estimating the summatoric function of f(n), we will express 
f(n) in a separate form.

It is known (cf. e.g. A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, II.
edition (Berlin, 1927), page 51; or H. Hasse, Aufgebansammlung zur höheren Algebra
(Berlin und Lepzig, Sammlung Göschen, 1934), page 95) that there are as many
different abelian groups of order n as there are different ways of writing n as a produt

C =
∞

∑
l=1

ω(l)
i√l

(4)

ψ(n) =
n

∑
l=1

ω(l) i√ n

l
+

n

∑
l=1

ω(l) { [ i√ n

l
] − i√ n

l
}

= i√n
n

∑
l=1

ω(l)
i√l

+ O(
n

∑
l=1

ω(l))

= i√n{ C + O(n
1

i+1 − 1
i ) }+ O(i+1√n)

= C i√n + O(i+1√n)



of prime powers, without respect to ordering.

It is expedient to consider the following generalization of the number theoretic function 
f(n):

We will denote by fi(k) the number of different ways of writing k as a product of prime
powers, without respect to ordering, if only prime powers of exponent ≥ i are taken into
account. It is clear, that the number theoretic function f1(k) is identitcal to the
previously defined f(k). Furthermore, if we consider an empty product to be 1, then 
fi(1) = 1 for every i.

In particular we would like to prove the following relation:


We will start by showing it in the case of k = pα, i.e. a prime power. For this purpose
we will show that

By definition fi(pα) means indeed the amount of solutions to the equation

The solutions are partly such that i + 1 ≤ α1 ≤ α2 ≤ …, but also partly such that 
i = α1 ≤ α2 ≤ …; the former amount is by definition fi+1(pα), and the latter being 
fi(p

α−i), which proves the correctness of (6).

To conclude (5) for prime powers from this, we will assume that the statement holds for
pα−i, i.e.

Then because (6)

fi(p
α) = fi+1(pα) + fi(p

α−i) = fi+1(pα) + fi+1(pα − i) + …

therefore the formula (5) also holds for pα. Thus by induction (5) holds for prime
powers.

To fully prove it, we still have to show that when (5) holds for k and l (where 
gcd(k, l) = 1), then it will also hold for kl.

From the definition we immediately get fi(kl) = fi(k)fi(l) for (k, l) = 1. If we further
assume that (5) holds for k and l, then

fi(k) = ∑
di|k

fi+1 (
k

di
) (5)

fi(p
α) = fi+1(pα) + fi(p

α−i) (6)

pα = pα1+α2+…

i ≤ α1 ≤ α2 ≤ …
(7)

fi(p
α−i) = fi+1(pα−i) + fi+1(pα−2i) + … (8)



with which we have now proven (5) in general.

We now sum both sides of (5) for k = 1, 2, … ,n and get

To apply our lemma, we must first show

n

∑
l=1

fi+1(l) = O(i+1√n)

For this purpose we will need the following lemma.

The series

∞

∑
l=1

fi+1(l)
i√l

converges; its sum is

where ζ(s) = 1 + 1
2s + 1

3s + … is the Riemann ζ-function for s > 1.

Proof We will first show that the infinite product Ai on the right side of (10) is
convergent. For i = 1 we have

A1 = ζ(2)ζ(3) … = (1 + (ζ(2) − 1))(1 + (ζ(3) − 1)) …

and the series

∞

∑
k=2

(ζ(k) − 1) =
∞

∑
k=2

∞

∑
n=2

1

nk
=

∞

∑
k=2

1

n(n − 1)

converges, namely to 1. (This also implies that A1 > 2 by the way) However, because

ζ(2 +
k

i
) ≤ ζ(2 + [

k

i
])

fi(kl) = fi(k)fi(l) = ∑
di|k

fi+1 (
k

di
)∑

ei|k

fi+1 (
l

ei
)

= ∑
di|k,ei|l

fi+1 (
k

di
)fi+1 (

l

ei
)

= ∑
di|k,ei|l

fi+1 (
kl

diei
) = ∑

gi|kl

fi+1 (
kl

gi
)

n

∑
k=1

fi(k) =
n

∑
k=1

∑
di|k

fi+1 (
k

di
) =

n

∑
l=1

fi+1(l) [ i√ n

l
] (9)

∞

∑
l=1

fi+1(l)
i√l

= ζ(1 +
1

i
)ζ(1 +

2

i
)… (10)



the product Ai will, besides the first i − 1 factors, be majorized through the ith power of
the product A1, therefore Ai is also convergent.

It is known that for s > 1, ζ(s) has the Euler product representation

which is to be taken over all primes.

We thus get that

All factors of the product are > 1 and the product is, like we have shown already,
convergent. Just like the infinite series with positive summands in each factor; we can
therefore do the multiplication factor-wise and build partial products.

Then 1

n
1
i

 appears as many times as n can be represented in the form

p
α11(i+1)+α12(i+2)+…
1 p

α21(i+1)+α23(i+2)+…
2 … = p

(

α11

i+1+(i+1)+…+

α12

(i+2+(i+2)+…+…)
1 p

α21

(i+1)+(i+1)+…+…
2 …

i.e. as many times as we can break n down into a product of prime powers with
exponent ≥ i + 1, i.e. fi+1(n) many. We have thus shown (10).

We will now show that

Due to (9), (10), and fi(l) ≥ 0 we have

n

∑
k=1

fi(k) ≤
n

∑
l=1

fi+1(l) i√ n

l
= i√n

n

∑
l=1

fi+1(l)
i√l

≤ Ai
i√n

which immediately implies (12). (12) also allows us to conclude that

n

∑
k=1

fi+1(k) = O(i+1√n)

which then in turn allows us to use our lemma from the introduction. We obtain

For the special case i = 1, our result is

ζ(s) = ∏
p

(1 +
1

ps
+

1

p2s
+ …) (11)

Ai = ζ( i + 1

i
)ζ( i + 2

i
)…

= ∏
p

(1 +
1

p
i+1
i

+
1

p
2(i+1)

i

+ …)∏
p

(1 +
1

p
i+2
i

+
1

p
2(i+2)

i

+ …) …

  

si(n) =
n

∑
k=1

fi(k) = O( i√n) (12)

si(n) =
n

∑
k=1

fi(k) = Ai
i√n + O(i+1√n) (13)



n

∑
k=1

f(k) = A1n + O(√n)

just like what was talked about in the introduction.

§2 Distribution of numbers k with fi(k) ≠ 0

It is immediately clear that fi(k), the amount of decompositions of k as a product of
prime powers whose exponent is ≥ i, will only be non-null for numbers k, in which all
primes have exponent ≥ i. For the sake of brevity, we will call these numbers "ith type
integers".

We now want to asymptotically evaluate the amount of ith type integers up to n. We

will denote this amount by ψi(n). Apparently ψi(n) ≤ si(n), as si(n) =
n

∑
k=1

fi(n) is a

sum of non-negative integers, who has ψi(n) summands with ≥ 1. Thereby from (12)
we can conclude that

We will more specifically show that the asymptotic formula

ψi(n) = Ci
i√n + O(i+1√n)

holds, where Ci is a positive integer dependant on i but not n.

For this purpose we will denote the numbers whose prime factorization only contains
primes with an exponent ≥ i but ≤ 2i by

(e.g. in increasing order). If χi(n) is the amount of elements ≤ n in the sequence (15),
then χi(n) ≤ ψi+1(n), as the sequence (15) contains many i + 1th type integers.
Therefore by (14) we have

Now every ith type integer can be expressed as one and only one product of two of
such factors, where the former is an ith power, and where the latter is contained in the
sequence (15). As a matter of fact, if

k = p
α1
1 p

α2
2 … pαr

r (α1,α2, … ,αr, ≥ i)

is an arbitrary ith type integer, then every exponent αj can be uniquely expressed in
the form of αj = βji + γj with βj ≥ 0, γj = 0 or i < γj < 2i, and then

k = (p
β1

1 p
β2

2 … pβr
r )i ⋅ p

γ1

1 p
γ2

2 … pγrr

ψi(n) = O( i√n) (14)

a1, a2, a3, … (15)

χi(n) = O(i+1√n) (16)



is the only decomposition of the wanted form. Naturally the product of an ith power
together with a number in (15) will be an ith type integer.

Thus

where m ≤ i√ n
aj

 and aj are the elements in the sequence (15).


By (16) and (17) we can apply our lemma from the introduction to ψi(n); we set 
ω(n) = 1 or 0, depending on whether n is contained in (15). We obtain

ψi(n) = Ci
i√n + O(i+1√n)

where

Ci =
∞

∑
j=1

1
i√aj

> 0

We have therefore shown the claim.

Footnotes

† The easily proven fact, that to every ψ(n) and i there exists only one such ω(w),
given by

ω(n) = ∑
di|n

μ(d){ ψ(
n

di
)− ψ(

n

di
− 1) }

where d goes through every positive integer whose ith power appears in n, is irrelevant
for what we are trying to do, as we will be able to immediately determine ω(n) in every
application.

ψi(n) = ∑
miaj≤n

1 = ∑
aj≤n

∑ 1 = ∑
aj≤n

[ i√
n

aj
] (17)


